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Kerr-Type Solution in Brans-Dicke Theory 

G u a n g - W e n  M a  1 

Received August 27, 1994 

The Kerr-type solution in the Brans-Dicke theory should contain three parameters: 
a mass m, a rotational parameter a0, and a coupling parameter ~o. It goes over to 
the Kerr solution in Einstein's theory of general relativity in the limit co ---> oo. 
Using these conditions, we construct a special solution from Bruckman's solutions 
which can be regarded as a Kerr-type solution in the Brans-Dicke theory. 

I.  I N T R O D U C T I O N  

The five-dimensional (5D) representation of  gravitation was originally 
suggested by Kaluza and Klein in order to unify the gravitational and electric 
interactions (Kaluza, 1921; Klein, 1926). Many functions have been devel- 
oped from it that mainly relate to the following three results: First, the 
Brans-Dicke theory (Brans and Dicke, 1961) can be equivalently expressed 
as a 5D theory by relating the fifth dimension with a scalar field (Belinsky and 
Khalatnikov, 1972). Second, through the Kaluza-Klein dimensional reduction 
procedure the 5D vacuum solutions are relevant to the construction of exact 
four-dimensional (4D) solutions with nonvanishing energy-momentum tensor 
(Belinsky and Ruffini, 1980), while the former can be found by using the 
inverse scattering method (ISM) under certain conditions (Belinsky and Zakh- 
arov, 1979; Ibanez and Verdaguer, 1986). Third, by identifying the quantity 
GM/c 2 (G is the Newtonian gravitational constant, M the rest mass of a 
particle, and c the speed of  light) as the fifth coordinate, Wesson proposed 
a variable gravity, that is, 5D space-time-mass theory (Wesson, 1983, 1984), 
which can embody Mach's principle (Ma, 1990a,b). 

Some years ago, Bruckman obtained stationary axially symmetric solu- 
tions in the 5D representation of the Brans-Dicke theory of gravitation using 
the ISM (Bruckman, 1986). Bruckman's work is very significant. However, 
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we feel that these solutions are not vacuum solutions of the Brans-Dicke 
theory in the sense that the energy-momentum of the matter field is zero, 
and that their physical meaning is not fully brought to light. In the present 
article, we construct the Kerr-type solution in the Brans-Dicke theory on 
the basis of Bruckman's solutions, by choosing appropriate parameters. 

2. VACUUM FIELD AND BRUCKMAN'S SOLUTIONS 
According to Belinsky and Khalatnikov, the 5D line element has the form 

-ds~5) : "ywv(x k) dx~ dx v : AE(~)(dx5) 2 4-  B2(q~)gij(x k) dx i dx j (1) 

Here and in the following, Greek indices run from 1 to 5 and Latin indices 
from 1 to 4. Moreover, q0 = q~(x k) is the scalar field in the Brans-Dicke 
theory and ggj the 4D metric. The nonzero components of the 5D Ricci 
tensor are 

A2[_~  (A'B2) ' ] 
R(5)55 = B5 q); k;k ''[- T q);kq);k 

R(5)ij = Rij (ABe)' (X____~ B" A 'B '  B'2) - �9 (2) 
A 8  ~ ,;g;j - + 2 ~ -  - 2 A--V - 4 8~  )'~;'~;~ 

-- ~;k ;k "[- "[- " - ~  q'- q~;k~ ;k gij 

where Rij is the 4D Ricci tensor, and all tensorial operations are computed 
with respect to gij. From the 5D field equation 

R(5)wv - 

one obtains 

1 
T(5)55 - 8~G B 2 R + 3 

1 
R(5)~/~" = _ 8,rrGT(s)w" 

B' B" ) ~- ~;k ;k + 3 ~- q~,~q~,k 

T(5)5 k ~ 0 

,[ , (A_; 
T(5)ij - 8 ~ G  Rij - -~ Rgi; + + 2 -ff q~;~;j 

+ (X._~_~ B" A'B' B'2~ , . 
+ 2 -~- - 2 A--B- - 4 B2 ]q~;,qz u 

- + 2 q~;k'kgij -- + 2 B B 2 

(3) 

A 'B'\ -1 
+ AB ) q~;kq~;kgij] 
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The well-known Brans-Dicke field equations are 

8q'r 
r -- 3 + 2~ T~ (4) 

1 
Rij  - -~ Rgi j  = - - - -  

8,rr to oJ 1 1 
q~ TO" - --~ q);iq);j + --2qo2 q~;kq?;kgij -- -~ q~;i;j q- -~ r 

From (3) and (4) one obtains that 

A z 8"rr + 3 Tk k co 
T(5)55 - 8,rrGB 2 - - 

T(5)i j = ~ Tij q- 2 - -  - q~:i;j 
8~rG B 

(A__~ B" A ' B' B '2 
+ + 2 ~ - -  2 a---ff 4 B2 

1 k B' ~)qz;k; gij  

(5) 

B"  B '2 
+ 2  + - -  

B B 2 A B  2qfl q~,kq~ gij  

If A and B are given by 

A = q0 [(3+2c~ B = q~ {1-[(3+2~ (6) 

we have 

, A2( 
7"(5)55 = (3 + 2oJ)Gq~ B 2 to + 3q~ ~- T/, k 

1 
(7) 

Expressions (7) show that the 5D "vacuum" (T(5)~ = 0) solutions correspond 
to the Brans-Dicke vacuum (T~j = 0) field only if the relations (6) hold. 

Furthermore, if the 5D metric %~(x k) has the form 

-ds~5)  = f(p, z) (alp 2 + dz 2) + "~lab(P, Z) d x  a dx  b (8) 

with a, b = 1', 2', 3' (here arabic numerals with primes are used in order 
to avoid confusion), one can solve the 5D vacuum field equations using the 
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ISM. Bruckman obtained the following set of new axially symmetric solutions 
with the Weyl-Levi-Civita solution as a "seed": 

r 2 f 4F2[F(r - [3)/[~ + M] 2 

- 4 ( b -  a c o s 0 )  2 + a 2 s i n 2 0 _  A~ 
sin20 J 

• 1 - sin20 

1 ( 
% ' 2 ' = % = - ~ ( A - a  2sin20) 1 -  

{A(a - b cos 0) 2[3 
71'2' = ~d~t ~--" --~-~--F 

- a s i n 2 0  a 2 - b  2 - M  2 . ~ ( r -  [3)M 1 - 

%'y = 3'55 = (1 - 2131r) z~ 

(1 - 2t3/r) {~- 1~- 2>3~2-~ 
f -  (r - 213) 2 (1 - 213/r + [32/r2 sin20) (a-l)2+3v2 

where 

1 
r -- ~ [13 - (13 2 + ag - b2) ~'21 

1 ( 1 - 2 1 3 / r  ya 
+ 2 [[3 + (132 + a2 - ba)t/2] 1 - 2~-]r ~- ~--~2 sin20 " 

1 b2) 1/2 ] u -- ~ [ - [ 3  + ([3 2 + ao 2 - 

1 ( 1 - 2 1 3 / r ) 2 8  
q_ 2 [[32 -t- (~2 nt. ao 2 _ b2),/21 i - 2 ~ r  V ~-~2 sinZO 

= (1 -213  a o -  bo 1 - [3(1 - cos0)  a 
\ r ] [  2 r 

+ a o +  b o 1 - - ( 1  + cos0)  
2 

(9) 

( l o )  
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- ao [3 
b =  1 - 0_2 1 - - r  ( 1 - c ~  

f~ = ( r -  13) + M  + ( b - a c o s O )  z 

A = ~ - ~ r  2 1 - 

and the spherical coordinates r, 0 are related to the cylindrical coordinates 
p, z via 

0 = r(1 - 2131r) l/z sin 0 

Z =  ( r -  [3) cosO (11) 

3. CONSTRUCTION OF THE KERR-TYPE SOLUTION FROM 
BRUCKMAN'S SOLUTIONS 

As mentioned above, the Bruckman solutions (9) are not yet the vacuum 
solutions in the Brans-Dicke theory, although it is not difficult to obtain the 
latter from the former; all one has to do is a straightforward calculation from 
(1), (6), and (9). In view of the fact that the physical meaning of the Kerr 
solution is quite clear, we should like to find the Kerr-type solution in the 
Brans-Dicke theory from Bruckman's solutions. The key point is choosing 
the parameters 8, ~, 13, a0, and b0. When ~ = ~ = 0 and b0 = 0 one can 
obtain the Kerr solution from (9), as Bruckman noticed, but such a solution 
is just one in the theory of general relativity because ~/3'3', and thus q~, become 
constants in this case. We think that the Kerr-type solution in the Brans-Dicke 
theory should satisfy the following three conditions: (i) it should contain only 
three parameters, mass m, rotational parameter a0, and coupling parameter o;  
(ii) it goes to the Kerr solution in the theory of general relativity in the limit 
o~ ---> ~; (iii) it becomes the Schwarzschild-type solution in the absence of 
rotation. These conditions lead us to choose b0 = 0 and 

(~  -t- 1)  2 + 3 ~  2 = 1 (12) 

In such a case we have 

8 : (1  - -  3~2 )  1/2 - -  1 (13) 

where we have made the choice of (13) from two possible solutions of ~ in 
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order to obtain the Schwarzschild solution but not the trivial flat-space solution 
when a0 = 0 and to --> ~. The remaining tasks are to determine the relation 
of ~ with to and that of  13 with the geometrical mass m. For our present 
purpose, let us consider the solution in the absence of rotation, which is 

~/1'1' = 'Y2( 1 - -  2 1 3 / r )  D - ~ - ( 1 - 3 ~ 2 ) l / E ] s i n 2 0  

"Y2'2' = -(1 - 2 1 3 / r )  (1 -3v2) t /2 -~  

~/v2' = 0 (14) 

'Y3'3' = (1  - -  213/r) 2~ 

f = (1 - 213/r)tl-v-(1-3v2)l/21(1 -- 213/r + (132/r2) sin20) -1 

Transforming into a spherical coordinate system by using (11) and combining 
(1) with (6), we obtain 

q~ = (1 - 2131r) ~/[(3+2t~ 

gtt = - ( 1  - 213/r) (1-3~2)1/2-~1[(3+ 2~ 

grr = ( 1  - 213]r) -(1-3~2)112-~/[(3+2~ (15) 

goo = rZ(1 - 213]r) L-(1-3~2)l/2-~/[(3+e~ 

g++ = g00 sin20 

Using the transformation 

r = H1 + 13/27) 2 (16) 

the coordinate system becomes isotropic, and the scalar field q~ and the metric 
transform into 

_ ._ \2~/[(3+2to)/3] 1/2 

__ 13 /2T~ 2{(1-3~2)1/2-~/[(3 +2~)/311/2 I 

gT~ = ( 1  - -  1312i') 2{1-(l-3~2)l/2-~1[(3+2~)1311/2) (17) 

X ( 1  + 13/2F)  2{1+(1-3~2)1/2+~/[(3+2m)/3]1/2} 

g00  = ~ 2 ~  

The Robertson expansion of ~,-j gives 
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gt, = - { 1 - 2otmff + 2~m2ff z + . . .  } 

= - ( 1  - 4{(1 - 3v2) 1/2 - ~/[(3 + 200)1311/2}[312r 
+ 8{(1 - 3~2) u2 - ~/[(3 + 200)/311/2} 2132/4-? z + ...) (18) 

g-~-~ {1 + 2 ~ m / ? +  . . .}  

= (1 + 4{(1 - 3~2) l/2 + ~/[(3 + 200)/3]u2}13/2~ + . . . )  

The classical tests of  the theory give the results a = [3 = 1 and ~ = (00 + 
1)/(00 + 2) (Weinberg, 1972); thus, from (17) and (18) we obtain 

{(1 - 3~2) 1/2 - ~/[(3 + 200)/311/2}[3 = m (19) 

{(1 - 3~2) u2 + ~/[(3 + 2o0)/311/2}13 = m(00 + 1)/(00 + 2) 

It is easy to find the solution of  (19), which is 

= - 1 / [ 6 ( 2  + 00)]1/2, 13 = [(3 + 200)/(4 + 200)]1/2m (20) 

Finally, the set of  special solutions which we seek is 

gu-- A -- a2 sin20 (ll -- [3127)[zl(2+~176176 
+ [3127) 

g~- = ~(11 +--[3/27~[2'(2+'~)(3+2'~176176 

•  - 472/[32~2 -F ~-2 sin20 j-12{[2(3+2~176 

g00 = rZg~r 

~ , * * = g  2 1 2 + ~ - ~  I~ l + ~ r  2 + (21) 

_ 4(b - a cos 0) 2 + aZsin20 _ A~ 
sin20 J 

X (I -1- ~'~-~(1-- [3/27~ [21(2+~176176176 
27] \1 T ~-~r] sin20 

-g+t- Fa213 {A(a-bc~ ( ~  ? 1 + ~ r  2132)M-M 2]}  

_ [3/27) [2/(2+t~176 
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where 

F =  ~ ( { 1 - [ 1 +  (~)211/2} + {1+  [ 1 +  (~)211/2} 

1 2 -  [2(3 + 2co)/(2 +co)] 1/2 

7"5( 1 O~-~sin~~ ) x L I + - 

M = F - ~ { 1 -  1+  

l ao(1 + 1~)2[[2(3+eo~/(2+~ 1 -  ~/27) [2(3+2'~)/(2+~ 

a = 2  ~rr] ~i + [3/2P] 

12 - [2(3 + 2to)/(2 +co)] 1/2 ) 

+ 1 - 2~(1 +2cos  0)J ~ (22) 

x 7 13/2~/ 
X 1 - (1 +2cos0 ) /  

t2= ? 1 +4-~ + M  + ( b -  acos0) 2 

It can be verified that the solution (21) becomes the Boyer-Lindquist-Kerr 
solution in the limit to ---> o~ by use of the coordinate transformation 

= t + 2a0& (23) 
= P(1 + 13/2P) 2 - i ~  + (~2 + a2)1/2 

We can say that such a special solution is the Kerr-type solution in the 
Brans-Dicke theory. 
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